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1.0 OVERVIEW

1.1 Introduction

The Office of Naval Research is interested in the interaction of human

operators with neural networks or connectionist-based systems when trying to

determine the source of an acoustic signal. ARD was awarded a Phase I SBIR

contract in September 1989 to develop an acoustic classification system

employing an array of traditional and network-based tools to be used for an

analysis of the type mentioned above. This report will describe the foundation

on which the classification system was developed, the system itself, the

experiments conducted and the results. It should be noted that ARD has

completed all the work outlined in the Phase I proposal and is prepared to use

the results discussed in this report to move into a Phase II effort. The

findings to date show a definite bias towards the use of "perfect classifiers"

in the type of experimentation conducted in this project. This will need to be

further analyzed in a more realistic environment using real world signals and

existing classification systems to better determine the true effect of

integrating neural network classification systems into the decision-making

process. An approach to how this can be tested is described in ARD's Phase II

proposal.

1.2 Rationale and Approach to the Phase I Effort

The use of acoustic sensors for the automatic detection and classification of

underwater objects such as mines is of considerable importance. Ideally,

backscattered active sonar returns from remote objects would be processed

automatically to determine their composition, orientation, contents, and other

characteristics. Although it is well known that the sonar return contains a

great deal of information about the physical properties of the insonified

object (Hickling, 1962; Morse, 1983), it can be extremely difficult to exploit

this information for practical use. Analytic solutions have been derived to

calculate the pressure field for idealized spherical or cylindrical objects,

and numerical methods can extend these solutions to more complex geometries

(Stanton, 1989). Nevertheless, most real world objects are too complex to

I ARD



permit a detailed theoretical or numerical analysis of their sound scattering

properties.

Despite this, everyday experience suggests that acoustic classification of this

sort is possible. For example, human listeners distinguish the sounds of

"wooden" from "metallic" or "solid" from "hollow" objects with surprising ease.

Perceptual psychologists have investigated the ability of human listeners to

identify the source events for a wide range of environmental sounds. These

include machinery noise (Talamo, 1982), the sounds of metallic (Howard, 1983)

and non-metallic impacts (Warren & Verbrugge, 1984), classroom sounds

(Vanderveer, 1980), and radiated underwater sounds such as propeller cavitation

(Howard & Ballas, 1983). These results have shown that listeners are

surprisingly accurate in identifying the sound source or in characterizing some

specified attribute of the sound source. A number of recent investigators have

suggested that this capability may prove useful for developing automatic

classification (Gorman & Sawarti, 1985) strategies. For example, in one case,

human experts were used to develop an intelligent, knowledge-based system for

passive underwater surveillance (Nii & Feigenbaum, 1982), and in another, human

listeners were used to identify a set of acoustic features for classifying

active sonar returns (Gorman & Sawarti, 1985).

Neural networks have also been demonstrated to perform a wide range of

classification and pattern recognition tasks. However, neural networks may

perform better when integrated with human classification capabilities or vise

versa. To demonstrate this, ARD has investigated how humans and networks

interact by developing and testing a prototype system in which people and

networks act jointly and individually to classify signals. The objectives are

to measure the relative performance of humans, networks and the combination of

the two, to find out what tools are desirable for the operator to use to make

classification decisions, and to determine what kind of decisions the operator

is willing to let the network make.

To accomplish these goals, ARD developed a neural network based prototype

system using signals from a previous contract with the Naval Air Systems

Command. The signals set used in the experiments conducted as part of this

project were selected from a group of 15,744 signals collected in a laboratory

2 ARD
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at the Naval Coastal Systems Center in Panama City, Florida. The signals were

divided into two groups representing a very clean set and a set where the SNR

was reduced to 8.5dB. Test subjects were asked to identify three characteris-

tics of the signals using four basic tools and a neural network classification

system. System utilization and classification performance was automatically

recorded during each session for post-experiment analysis.

Three experiments were conducted. In the first experiment, test subjects were

asked to identify the thirty-six signals using four traditional tools, but not

the networks. Subjects were automatically presented with the time domain

waveform of the signal and allowed to call up the frequency domain plot or

spectrogram of the signal. A time windowing function was also provided to

allow the user to zoom in and take a closer look at specific portions of the

time domain signal. In addition, the subjects could listen to the sound as

many times as they desired. Experiment two recorded the performance of the

neural networks operating alone, without help or intervention of the operator.

In the third experiment, test subjects were allowed to use the classification

abilities of the networks to aid in the decision-making process in addition to

the tools used in experiment one. The experiments are discussed in detail in

Section 5 and the analysis of the experiments is discussed in Section 6.

1.3 Artificial Neural Networks

Traditional general-purpose digital computers have a fundamentally serial

architecture. This architecture, sometimes known as a von Neumann

architecture, is characterized by a single, very powerful processor which

executes a set of instructions sequentially in a step-wise fashion. Dramatic

advances in the speed of these machines have been achieved primarily through

large-scale integration which effectively increases the density of system

components. There is a growing awareness in computer engineering, however,

that current technologies are approaching an upper bound on processor and

memory speed; and, that further improvements in system throughput must be

achieved by adding processors rather than by increasing the speed of individual

processors. These developments have led to the recent burst of research

activity on parallel architectures. Artificial neural networks (ANN) or

connectionist networks reflect one approach to massively parallel architectures

of this sort. ARD
3
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Many ANNs have been designed to imitate some of the very gross properties of

living nervous systems. Hence, they are characterized in termks of a set of

very simple, neuron-like computational elements which are massively

interconnected to form a network capable of performing complex computations.

Computations in such a network are carried out in parallel with each unit

operating concurrently with the others. The output of each element or

processor is typically a non-linear transform of the weighted sum of its inputs

(either from other network elements or from measurements external to the

network). Hence, the actual computation carried out by the network is

determined by the weight values for the interconnections between units and the

non-linear function. The design of these systems not only achieves substantial

improvements in processing speed over conventional systems, but also leads to a

number of other useful characteristics as well. Among these is a self-

organizing capability which permits them to learn to solve a particular

pLoblem. During training, the network is presented with a series of signals,

each paired with a desired output or target value. Various learning algorithms

exist which specify how the network weights are adjusted to minimize the

overall error between the computed and target output. Once a network has

learned a mapping, it may be used for direct classification or for feature

extraction using unfamiliar signals. This characteristic obviates the need to

specify signal features a priori.

For this project, ANNs have been exploited as a near perfect classifier for all

the clean and some noisy signals. ARD purposefully degraded the signal set to

the point where the networks would not be a perfect classifier to encourage the

users not to use the networks exclusively. Section 2 of this report describes

the signal set and Section 4.0 describes the neural networks in detail. It

should be noted, however, that the neural networks can be trained to classif.,

the clean signals with 100% accuracy. As noise is added to the signals, the

network's performance drops off very slowly, Even after the SNR has been

reduced to 8.5 dB, performance does not drop off precipitously as one might

expect. In fact, network performance never fell below chance even when the

signal-to-noise ratio was reduced to -4 dB. Section 5.3 contains a set of

illustrations which better depict the significance of this finding. For this

reason, ARD believes that neural networks may be very effective at classifying

signals from real-world environments.

4 ARD
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2.0 SIGNALS

2.1 Signal Parameters

The goal of this research was to evaluate the interaction between a human

operator and an acoustic classification system containing several tools to aid

in identifying acoustic signals. Since the interaction itself was of highest

interest, a controlled data set which would not complicate the evaluation

process was desired. To this end, the signal set employed in the experiments

was part of an extensive set of signals collected in a laboratory setting at

the Naval Coastal Systems Center (NCSC) in Panama City, Florida. Although the

signals were collected under laboratory conditions, they represent significant

and realistic parameters in the realm of underwater acoustics.

The signals were sonar returns from the insonification of two steel targets

which are scaled nodels of mines. Each target had a unique shell thickness to

diameter ratio. One shell was five percent of the outside diameter of the

target, and the other was ten percent. The targets were constructed to within

0.005 inches of the original specification. Detailed drawings for the

specification are provided in Figure 2-lA. Figure 2-lB is a photograph made at

the time the targets were inspected for tolerances. Figure 2-IC is a

photograph of the targets after data collection was completed.

The two shell thicknesses were used in combination with different interior

contents and angles of insonification to give the signal set realistic

attributes. The three interior contents were air, water and a solid epoxy.

The angles of incidence were 90 degrees (the target suspended broadside to the

transducer and hydrophone), 45 degrees and 0 degrees (end on). Varying these

three parameters produced a set of 18 signal classes:

2 Shell Thicknesses x 3 Angles x 3 Contents = 18 classes
Five Percent 90 Degrees Air

Ten Percent 45 Degrees Water

0 Degrees Solid

5 ARD
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Figure 2-IB Targets Before Final Assembly
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Figure 2-IC Targets After Data Collection
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At each of these conditions, 32 signals were collected to allow a set of

averaged signals to be constructed to produce very clean signals. This set of

parameter combinations was sufficient for the experiments conducted for this

project, but it represents only a portion of the complete set collected. For

the sake of brevity, only the information relevant to the parameters used in

the current work will be described.

2.2 Data Collection

The signal set was collected in a facility at NCSC. To perform the actual

collection, each target was suspended in a 10' x 10' x 7' tank and insonified

with 6 cycles of a 200 kHz sinusoid. The tank is shown in Figure 2-2, and the

collection hardware is shown in Figure 2-3. The reflected acoustic signals

were sampled at 2 MHz and digitized over 12 bits, resulting in an amplitude

resolution of 4096 discrete values. One thousand and twenty four (1024)

samples were obtained for each signal.

2.3 Signal Conversion

The raw signals were converted to produce signals in the format needed for

human experimentation and neural network training. Since the signals were

digitized at 12 bits, using 11 bits for amplitude and one for sign, the first

step of the conversion resulted in signals of ASCII data in the range (-2048,

2047) as shown in Figure 2-4A. Any DC component (offset from zero), was

removed by subtracting the mean of each signal from all points in that signal.

This made the mean of every signal zero. The next step in the process was to

normalize the signals by adjusting the amplitudes in each signal to a range of

(i,-i). This step was taken to equalize the amplitudes of all the signals in

the set. This was necessary to preclude the subjects from using differences in

the amplitude of the signal as a cue to any of the parameters. This method of

equalization was just one of several possible solutions. It was chosen as the

simplest method likely to accomplish the objective. To make this adjustment

the maximum absolute value of the points in each signal was determined. The

maximum absolute value varied considerably from class to class, and very

slightly from signal to signal within a class. All points in the signal were

divided by this absolute value, making the range of amplitude values (1,-i) and

9 ARD
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I
guaranteeing that at least one point in each signal was either I or -1. An

i example of a normalized, mean-zero adjusted signal is shown in Figure 2-4B.

Although the signals were "normalized" to the range (1,-i), they were still

1024 points long. Due to the rotation of the targets in the tank, and to small

differences in position each time a target was suspended in the tank, the

initial specular return (reflection of the six-cycle sinusoid) did not occur at

the same time in each class of signal. In addition, late in each signal, a

reflection from the surface of the water appeared. This was due to the

geometry of the tank, as shown in Figure 2-5. Both the location of the surface

return and its amplitude were related to the class of signal. Therefore, the

surface return had to be eliminated from the signals to preclude its use as a

cue to the class of signal. "Standardization" of the signals was the process

of aligning each class of signal at its specular and eliminating the points

which included the surface return.

2.4 Signal Standardization

Standardization was a four-step operation. First, the signals were time

synchronized (aligned) relative to their initial specular return. Second, the

surface return was removed by deleting points from a predetermined location to

the end of the signal. Third, only for the averaged signals played audibly to

the subjects, the signals were ramped up near the specular and down before the

surface return. And fourth, leading zeros replaced the noise at the beginning

of the signals, and padded the end of the signals to 500 points.

In order to align the signals, the specular had to be precisely located in a

small level of noise. The automatic method used to find each signal's specular

was a mean window algorithm. The algorithm consisted of taking the mean of the

absolute values of the first fifty points in a signal, which were known to be

noise, multiplying the mean by a gain factor and comparing the product to the

absolute value of each point, starting with the second point. If a point was

larger than the product, the next three points were checked. If three of the

four points were larger than the product, then the first point which satisfied

the criterion was marked as the first point in the specular. Only three points

were required to meet the criterion to allow for one of the points to be close

ARD
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to zero as the signal crosses the x axis. Four points were checked because

random noise could sometimes exceed the product of the mean and the gain

factor.

The surface return in each class of signal was found using a combination of

visual inspection and the geometry of the tank. A fixed number of points

between the specular and the surface return were calculated for each class.

The minimum number of points between the specular and the surface return was

applied to all signals. All points more than the minimum number beyond the

specular were eliminated. The entire signal was then shifted to the left by

dropping leading points until the specular began exactly 25 points into the

signal.

Finally ramping was applied, but only on a separate set of averaged signals

which were played audibly for the subjects in the experiments. The ramping

started five points before the specular and continued through nine points after

the first point of the specular, giving a ramp of fifteen points. The purpose

of the ramp was to gradually introduce the main energy of the signal. This

prevented spurious aliasing caused by the sudden onset of a high level of

energy. The actual ramp was performed by multiplying each of the fifteen

points by a linearly increasing factor between zero and one. In this way the

points at the beginning of the ramp were multiplied by a smaller factor than

those at the end, thus giving the required graduation of energy. Conversely,

the end of the signal was linearly down ramped, starting at the fifteenth point

before the end of the signal. The down ramping was done to smoothly taper the

energy level down to zero. Between the end of the ramped points in the

specular and the down-ramped points at the end of the signal, the points were

simply copied from the original version of the signal to the time synchronized

signal. After the ramped points at the end of the signal, zeros were used to

pad each signal out to 500 points.

For the purposes of the three experiments, the 32 instances of each normalized,

standardized signal were split into groups of eight signals. The groups were

averaged into four signals: two to be used for training and two for testing.

The averaging was accomplished by averaging each of the 500 points in the

signals across the signals. The ith point in the resulting averaged signal was

ARD
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the result of summing the ith point of each signai and dividing the sum by 8.

Averaging the signals produced a cleaner example, and a higher signal-to-noise

ratio than the original instances of the signals. An example of an averaged,

"standardized," but unramped signal is shown in Figure 2-6.

A comparison of Figure 2-4A and 2-6 best illustrates the effect of the signal

conversion process applied to the signals. The 18 classes of signals are shown

in averaged (over eight instances), normalized, standardized, unramped form in

Appendix A.

To facilitate references to the signals a coding convention was adopted.

Signals are referred to by up to six characters. The first character is either

A, S, or W, identifying the content as air, solid, or water. The second

character is either 5 or 1, identifying 5% (thin) or 10% (thick) shell

thickness. The third and fourth characters identify the angle (e.g., 45). The

fifth and sixth characters are 20 which is a shortened version of the 200 kHz

frequency of insonification. At times the fifth and sixth characters are not

present. For space reasons in some charts the angle is identified with a

single digit as 9 (90 degrees), 4 (45 degrees), or 0 (0 degrees).

ARD
17
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3.0 SOFTWARE

3.1 General Description

Software to implement the experiments was written largely in the C programming

language on a Micro Express 386/25 with 640k of RAM and an 80Mb hard disk

drive. The software uses a largely graphical interface, and was implemented on

the EGA standard. The specific hardware configuration and the way the subjects

used it is shown in Figure 3-1. As can be seen, this is a two monitor system

with all the graphics on one VGA monitor with 16 colors and 640 X 480

resolution and all the textual information is displayed on a monochrome

monitor. A Data Translation 2801A D/A board was used to convert the digital

waveforms to analog signals and play at 10,000Hz. A low-pass anti-aliasing

filter with a cutoff frequency of 5,000 Hz was used to eliminate high frequency

artifacts. An NAD 7225PE receiver amplified the signals, and the subjects

heard them on Sony MDR-V6 headphones.

The software developed for this project was used to conduct a series of

experiments and is not a required deliverable. Should ONR want a copy, it

could easily be made available. Care was taken to ensure the software was of

very high quality. It would also be possible to reuse this software on other

projects or to modify it for use in a Phase II follow-on to this effort. The

only additional work necessary to turn this into a deliverable would be to

develop a users guide and installation instructions.

3.2 Software Development

Software development was divided into four phases: 1) development of the

digital signal processing tools and graphics interface, 2) development of the

menu interface and instructions, 3) development of the neural networks and 4)

the development of the experimental software to collect and analyze the data. A

fifth aspect of software development was the preparation of the signal set

which is discussed in detail in Section 2. The software was written largely in

Microsoft C Version 5.1 under DOS Version 4.01. The graphics were developed

using EGA graphics routines from Connell Graphics Version 3.0. The menu system
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1

was developed using a Hercules monochrome video system. The FFT algorithm was

adapted from the book Digital Spectral Analysis with Applications (Marple) and

written in Microsoft Fortran Version 4.1. Data Translation's PCLAB library

Version 3.01 was used to do the A/D conversions. The system was designed and

implemented with the help of two human factors engineers to ensure the highest

level of user acceptance and usability. This approach was highly successful in

that there were virtually no questions by the users on the intent or function

of the system.

3.2.1 Digital Signal Processing (DSP) Tools

Originally, ARD had planned on using a set of tools called the Interactive

Laboratory System from Signal Technologies Incorporated (STI) to handle the DSP

portions of the software. As advertised, the software from STI should have

been able the integrate with user-developed software on a PC. However, in

actual practice, this was not possible for a 386 class PC. Given that it was

imperative to have a core set of DSP tools imbedded in the experimental

software, ARD developed its own system that allows a user to display a time

domain plot, a frequency domain plot and a spectrogram of the signals used in

the experiments.

The time domain plot, as shown in Figures 3-2 and 3-3 (clean and noisy versions

of a signal), was automatically displayed each time a new signal was brought

into the system. This is the 500-point representation of the signal after

going through the manipulations described in Section 2. The decision to make

the time domain appear automatically was based on the notion that in Experiment

3 the users may be tempted to only use the data provided by the neural

networks. Since the purpose of the study is to analyze how users interact with

a system employing a neural network classifier, ARD decided that some type of

induced interaction might be necessary in such a circumstance. To keep the

experiments as similar as possible, the time domain signal was automatically

displayed in Experiment I as well.

In addition to the standard display of the time domain plot of the signal,

users were allowed to zoom in on any specific portion of the signal to gain a

higher degree of resolution for that portion of the signal. This was done to
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allow users to try and determine for themselves if any specific portion of the

signal held the key to its identity. Each time the time domain signal is

redisplayed, the frequency domain plot is also regenerated using the pared down

data. The spectrogram display was not affected by the "ZOOM" function.

The frequency domain plot was generated by taking the 500 point time domain

signal and computing the Fast Fourier Transform (FFT). This produces 256

complex values, and we took the absolute value of each complex number to get

magnitude values. We then averaged each four points to bring the resolution of

the frequency domain plot down from 256 points to 64 points to match the

resolution of the spectrograms. The resulting frequency plot was then

displayed in a window on the graphics monitor. This tool was only displayed on

demand by the user.

The spectrogram is created by dividing the time domain signal into 13

overlapping windows of 128 points each and computing an FFT on each window.

the results are then displayed in an overlapped fashion in a window on the

graphics screen. This tool was only displayed on demand by the user and will

be discussed in Section 5., Analysis.

3.2.2 Menu Interface

The menu and instruction screen was separated from the graphic displays to keep

from overcrowding a single display and to keep from switching back and forth

between instructions and the tools. ARD's human factors engineers felt this

was the only way to ergonomically handle the amount of data without developing

the system in a windowing environment. As a result, all the system functions

were clearly described on line for the user and space was provided for the

users to enter their responses to the classification questions posed by the

system. This is illustrated in Figure 3-4A.

Primarily, this screen told the users what to do at each step of the process.

It also told the users how many more signals would be analyzed before the

session ended. It allowed the users to record their selections for the three

key parameters to be identified from the signal. Keys were labeled so that the
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(A) INSTRUCTIONS: 17 TRIALS TO GO

Press P to hear the signal

s- Press T to display the Time Domain signal

. Press ZOOM to zoom in on a portion of the time domain signal

a- Press F to display the Frequency Domain signal

. Press S to display the Spectogram of signal

*- Press NE-T to display the selection of the Neural Network

, Press N to finish this signal and go to next signal

(B) CURRENT SELECTIONS:

(1) THICKNESS: EZZI
(2) CONTENT:

(3) ANGLE: L

<< Full Size of Signal >>

Figure 3-4A Menu Interface Before the User Attempts to Classify the Signal

(A) INSTRUCTIONS: 17 TRIALS TO GO

- Press P to hear the signal

. Press T to display the Time Domain signal

. Press ZOOM to zoom in on a portion of the time domain signal

* Press E to display the Frequency Domain signal

Press S to display the Spectogram of signal

a. Press NE-T to display the selection of the Neural Network

o- Press NE-XT to finish this signal and go to next signal

(B) CURRENT SELECTIONS: (C) ACTUAL SIGNAL:

(1) THICKNESS: T (1) THICKNESS: THI
(2) CONTENT: Al (2) CONTENT: AIR

(3) ANGLE: to (3) ANGLE: F-

Press to Continue ...

Figure 3-4B Menu interface After the User Attempts to Classify the Signal
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first five function keys would allow the user to: Fl, redisplay the time domain

signal after issuing a zooming command; F2, zoom in on a specific portion of

the time domain signal; F3, display the frequency domain plot of the signal,

F4, display the spectrogram of the signal; and F5, display the neural network

analysis/classification of the signal (in Experiment 3 only). The space bar

was labeled "Play" to indicate that pressing this key would audibly play the

signal.

The bottom portion of the screen was reserved for the users to record their

responses and for the users to get feedback on the correct classifications

Users could select any of the categories while simultaneously using the tools

described above, until the "Next" key was pressed, as shown in Figure 3-4B.

Once the "Next" key is pressed, the graphics display was frozen and the correct

classifications were presented to the user. This feedback was not only

important in helping the user to learn the signal set early in Experiment 1, it

continued to help to improve the user's performance throughout the

experiments.

3.2.3 Neural Network Software

NetworKs were trained using the backpropagation paradigm. [A short description

of Backpropagation (BPN) is contained in Section 4J. The networks were trained

using the 500 amplitude points of the time domain signals as input to the

networks. The number of hidden nodes was fixed at eight after several training

runs to determine the optimum number. There were eight output nodes to account

for the eight principal parameters being classified in the experiments, two for

shell thickness, three for interior contents and three for angle of

orientation. Training was carried out on a Compaq 386/20 using an HNC

accelerator board. The resulting weights for the trained networks were

transferred to the Micro Express 386/25 used for the experiments along with an

ARD developed BPN to carry out operational runs of the network.

During Experiment 3, the network was run for each new signal if the user

requested it. This run was conducted in real time and the results displayed in

the form of a bar graph (Figure 3-2 and Figure 3-3) to indicate the relative

confidence of the network that it had developed the correct response. This
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confidence level was related to the strengths of the activations on the output

nodes. For example, the network was trained to learn the desired output of

0.99 for node one for a thick-shelled target. If the actual output was 0.90,

then the bar graph would show a very high confidence. However, if the network

produced an actual output of 0.60 then the confidence would be significantly

lower. In actual practice, the confidence was quite low on several of the

noisy signals even when the networks were correctly identifying the objects.

This was intended to reduce the test subjects dependence on the network's

classification analysis.

3.2.4 Experimental Control Software

Several small applications were developed as necessary to support the actual

conduct of the data collection effort. The first step was to make it easy for

the user to access the system and record the results. Two log-on screens were

developed to clearly identify Experiments 1 and 3. Batch jobs were run at the

end of each session to back up the data. During each session, the sequence of

key strokes was recorded for post experiment analysis. Once all the subjects

were run through both Experiment I and 3 additional software was written to

break down the data in various ways to prepare it for statistical analysis.
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4.0 NEURAL NETWORKS

4.1 IntroductionI
In addition to the two human experiments, ARD carried out an analysis based

4 solely on the performance of artificial neural networks (ANNs) using both clean

and noisy signals. As mentioned in the introduction, ANNs can be useful for

classifying data with minimal prior knowledge regarding specific features of

the data. We have applied this technology to the problem at hand to gain a

better insight into the interaction of humans and neural network based systems.

4.2 Network Training by Backpropagation

The networks used were trainedI for sonar classification using the method of

e Rumelhart, Hinton, and W" ams (1986). This method, called the generalized

delta rule, enables * - inter-unit connection weights to be adjusted

empirically on the basis of training experience and is the basis for the

backpropagation paradigm. During training, pairs of input and target or

desired output vectors are presented to the networks. For each pair, a set of

output valuas is computed and an error signal is determined for each output

unit which is based on the difference between the observed and target values.

This is shown schematically for a three-layer network in Figure 4-1. Weights

(Output Vector)

J .Output

(Fr-or)-.
-t idden

(I arF(J t Vect~or) 4------(Input Vector)

Figure 4-1 Error Back Propagation ARD
28
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between each output unit and the hidden units are then adjusted by an amount

proportional to three quantities: 1) the error for that output unit, 2) the

output of the hidden unit, and 3) a learning rate parameter (between 0.0 and

1.0). The learning rate parameter serves to avoid overcorrection thereby

preventing oscillations in the weights as the outputs converge to the target

values. To illustrate this process, consider the weight between output unit j

and hidden unit i, i,1 shown in Figure 4-1. The adjustment term for this

weight,Awji, is simply the product of the learning rate, , the error

signal,5j, and the output of unit i, O i

Awji =18 i Oi

where the error signal is the difference between the target value and the

actual output, weighted by the derivative of the nonlinearity used to "squash"

the utput. For the logistic squashing function used in this research, the

error term for an output unit is given by

8j (t 0 .~o (11 -o.)

A similar adjustment must be applied to the weights between the input and

hidden units. Unlike the output units, however, target values cannot be

specified directly for the internal or hidden units. To estimate the error term

for each hidden unit we apportion the observable or output error among the

hidden units in proportion to the weights between the hidden and output units.

This estimated error is again weighted by the derivative of the squashing

function and for hidden unit k, is given by

k Ok (1- Ok) 'Wjk i

where the sum I Wjk 6 j, is taken over the j output units which connect

to this unit. It has been shown theoretically that the generalized delta rule

serves to minimize the sum of squared errors between the observed and target
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signals by gradient descent in the weight space. Similar adjustments are made

in the bias or threshold terms for each unit. Repeated application of this

process produces a trained network which maps the input data set to the target

data set. This self-learning capability makes backpropagation well suited for

acoustic classification problems in which the functional relationship between

the input/output mapping is not understood analytically.
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5.0 EXPERIMiENTS

5.1 Introduction

A two-monitor PC configuration was used for the human experiments. This

allowed the display of all the graphical representations of the signals on one

monitor while all textual materials were managed on the second. The users had

four base tools and the neural network classification system (Experiment 3

only) to use in making their personal judgements on the parameters to be

identified from the signals. The four base tools included a time domain plot

of the signal (which included a windowing feature to allow the user to select a

portion of the signal for display or listening), a frequency domain plot of the

signal, a spectrogram plot of the signal, and of course, the ability to hear

the signal (or portion of the signal) as many times as the users wanted.

Each subject ran ten sessions of Experiment 1 and five sessions of Experiment

3. During the course of each session, subjects were presented with 32 signals,

one at a time. As described in Section 2, 18 signals were clean and 18 signals

were noisy (SNR reduced to 8.5 dB). As each signal entered the queue, the

subjects had the option to invoke any of the available tools or to select any

of the three parameters being classified. To enter a selection, the user

pressed one of the specially labeled keys on the numeric key pad. The

selection was registered at the bottom of the monochrome display beside the

appropriate label as shown in Figur, 3-4B. Once all three selections were

entered, the subject pressed the "NEXT" key to check his answers.

Instructions displayed on the text monitor controlled the information displayed

on the graphics monitor. Responses and commands given by the user were entered

via a standard keyboard with predefined keys, clearly labeled as to their

meaning and intended function. The following discussion describes how the

experiments were conducted. Refer to Figures 3-2 and 3-4 as an example of the

information the system displayed for the user during each session.
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5.2 Experiment 1: Operators Using Base Tools Without Neural Networks

When the test subject sat down to begin an experiment, the computer was off.

Turning on the power strip with all the system components plugged in turned

everything on. A small batch file automatically ran to change to the correct

subdirectory on the system where the experimental software was located. By

entering the command <EXPi> the user activated the application and was

presented with a graphic display requesting the user to enter his initials and

session number. This information became the labels for the data files created

while the session was in progress. An instruction appeared instructing the

user to press the "NEXT" key to begin the session. The "NEXT" key was a

relabeled number 1 key on the numeric key pad. When this key was pressed the

application software and signal set for that session was loaded.

All subjects were given the same signal set, containing both clean and noisy

signals, for any given session. However, the order of presentation of the

signals across sessions was randomized. The clean signals were never altered

in any way. A different random number seed was used to create the randomized

noise for the set of noisy signals in each session. This made it difficult for

the user and the networks to learn the complete set. The variation in the

noise reduced the dependence the users placed on the overall performance of the

networks.

Once the signal set was loaded, the first pair of screens in the experiment

were displayed. The text screen displayed what is illustrated in Figure 3.4A.

The graphics screen automatically displayed the time domain of the first

signal, as illustrated in the upper left corner of Figures 3-2 and 3-3.

(Signals were presented to the test subjects in random order, but each session

presented the same order across subjects). It was important to display the

time domain plot automatically to avoid having users depend solely on the

results of the neural networks as the only guidance for making their

classification decisions. To minimize any potential influence on the

decision-making process of the test subject, the time domain signal was the

only mandatory tool presented in any experiment.
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The subject could then use the space bar to hear the signal or press any one of

five function keys to invoke the use of other tools or system controls. For

instance, the user could press F2 (labeled ZOOM) to window in on a portion of

the time domain signal. If this control were invoked, the user was required to

enter two values representing the starting and ending points of the signal to

be displayed (in the range of 0-499). The user then had to press the Fl key

(TIME) to redisplay the time domain signal, this time seeing only the selected

portion of the signal. Any time the "zoom" function was used, the frequency

domain plot was redrawn to match the points displayed in the time domain plot.

Pressing the space bar at this point audibly played the portion of the signal

selected in the previous operation. The users could redefine the portion of

the signal as many times as they wished. Pressing the F3 or "Frequency" key

invoked the display of the frequency plot of the signal in the upper right

corner of the screen, as seen in Figures 3-2 and 3-3. Pressing the F4 key

produced a display of the spectrogram of the the signal. If the subject wanted

to use the spectrogram in isolation of the other tools, he could do so, with

the exception of the display of the time domain signal which was automatic.

Using the windowing tool described above had no effect on the spectrogram

plot. The complete graphics screen including all domain plots is illustrated

in Figures 3-2 and 3-3.

5.3 Experiment 2: Networks Operating Alone

The purpose of the second experiment was to train and test networks to

determine their capacity to perform acoustic classification. Previous

experience with networks applied to acoustics problems provided direction and a

methodology for determining the best types of networks to explore for this

project. As part of the work ARD conducted for the Naval Air Systems Command

(NAVAIR) on a similar neural network project, a software system ws developed

to allow efficient training and testing of a large numler of i>.tworks. The

system was used on this contract to develop the network configuration for the

third experiment. The system and how the networks were trained are described

below.
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5.3.1 Network Training System

The network training system was designed to allow the operator to specify the

parameters for several runs, each of which might take from several minutes to

several hours. The specified networks could then be run consecutively without

further input from the operator. This allowed for overnight runs of the

I networks, which did not interfere with the normal research activities during

the day. Since the networks were run consecutively, it was necessary to devise

a the means to stop them after they had learned the task and before overtraining

occurred.

Two methods were used to end a training run. No run was allowed to exceed a

maximum number of iterations, but if the network had reached its state of best

performance the run was stopped before the maximum number of iterations.

Classification performance is cumbersome to test as often as necessary during

I a training run. Therefore, the measure of performance used during training was

not how well the network classified the entire signal set, but its Mean Squared

Error (MSE). The MSE is a measure of the difference of the desired output of

the network from the actual output of the network. It is more restrictive than

simply whether or not the class is correct.

Since the network is attempting to produce known values at the output nodes for

a given set of input signals, it is possible to measure the difference between

the desired output for each signal and the actual output. This MSE is measured

for two sets of signals: the normal training set, and a specially formulated

set called the testing set. At regular intervals during the training run,

training is disabled while the training set and the testing set are passed

through the network and the MSE is calculated for both. At these intervals a

copy of the network's weight structure is saved, in case the MSE of the network

increases from this point forward.

It is typical for the MSE of the training set to asymptotically approach a

minimum for any given number of hidden nodes. More training will continue to

reduce the training set MSE towards the minimum. However, the real power of

the neural network lies in its ability to classify signals outside the training

set. This test set consists of signals from the same classes as the training
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set signals, but not identical to them. Performance on the test set, not the

training set, is the proper measure of network performance. MSE performance on

the test set does not generally follow the pattern of the training set.

Instead, MSE of the test set usually reaches a minimum and then increases as

training goes on, while the training set MSE continues to decrease. Too much

training (beyond the global minimum for the MSE of the test set) will usually

lead to poor performance on signals outside the training set.

The MSE on the test set is measured in the same manner and at the same

intervals as on the training set. When the MSE on the test set stops falling

and begins increasing, training is halted (see Figure 5-1) and the state of the

network at the minimum testing MSE is recovered. The training runs typically

went to a few hundred thousand iterations, although in many cases the

significant training took place in the first few tens of thousands of

iterations.

5.3.2 Training the Networks

Originally, ARD intended to construct a hierarchical set of three networks to

process one parameter at a time. The first network would identify only one

parameter. The second network would assume the results of the first network to

be correct, and only concern itself with a subset of the signals. The third

network would perform similarly, but have a smaller subset to deal with. After

preliminary tests, it became clear that if the system made a mistake in the

first level of processing, there was little or no hope that further processing

could recover. In fact, it was likely that further processing on the part of

the networks would only confuse the operator and degrade the overall

performance of the system. For this reason, the hierarchical approach was

abandoned in favor of using a single network to classify all aspects of the

signal in a single pass. In this way, a network's low confidence in a single

parameter would not forfeit the classification of the other parameters. No

loss of performance was feared because the preliminary networks had shown

reliable classification of all three parameters simultaneously was as well as

for only one parameter.
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The goal then became to find the best network capable of distinguishing the

three parameters of interest: shell thickness, interior content and angle of

insonification. The preliminary tests' dictation that all three parameters be

included in the network led to fixing the number of hidden layer nodes at

eight. Results from a previous project helped to fix several other network

parameters. All possible networks had in common their input size and type,

learning and smoothing rates, and output layer size. The input layer consisted

of 500 nodes for time domain signals. The learning and smoothing rates used

were 0.3 and 0.5, respectively. Lastly, eight output nodes were required, one

for each specific parameter value. The input and output specifications are

described in detail below.

The networks were trained on clean and noisy versions of the first and second

averaged signals created from 16 of the 32 original instances of each signal.

The signals were the same as those used in Experiment One, with the exception

that no ramp was applied to the network signals. The third averaged signal for

each class was used as the test set for measuring MSE, as described above.

Based on network performance and ease of adding noise, the time domain form of

the signals was chosen as the prefered input type. The time domain form of the

signals consists of 500 amplitude points in the range (-l, 1). This is the

effective range of input values for the backpropagation network due to the

transfer function of the nodes. The goal in making this transformation was to

use the greatest range possible in the transformed values, thereby maximizing

the differences between the signals and making the network's task easier. The

same format was used in the human experiments, with the addition of ramping.

Refer to Section 2 for a complete description of the signals.

A straightforward structure was selected for the output node results. One

output node is assigned to each parameter of interest. For example, if a

network were trained only to differentiate signals into 5 percent (thin) or 10

percent (thick) shell thicknesses, the network would have two output nodes.

One node would be assigned to thin signals and one to thick. During training

the thin output node would be taught to produce a high value (0.99) if the
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incoming signal is thin, while the thick output node produces a low value

(0.01). If the signal is thick, the thick output node is taught to produce a

high value while the thin output node gives a low value. When training is

complete and the network is not told the class of the incoming signal, the

activation on the output nodes determines the class of the signal. Whichever

output node is higher is considered to be the estimate of the network. The

networks trained here have eight output nodes: thick and thin; air, solid, and

water filled; and 90, 45, and 0 degrees azimuth. The basic network

architecture for all networks trained is illustrated in Figure 5-2.

5.3.3 Training Signals

The training involved running several networks to determine which performed

best. Although many of the network parameters were unchangeable, as described

above, two major factors were varied. The random initialization of the weights

between nodes was changed because initial weight values have an impact on the

final solution reached during training. Most importantly, however, the input

signals were used in both clean and noisy form. The clean signals were simply

the normalized, standardized 500 point signals described in Section 2. The

networks trained with noise are described in Section 5.3.4.

The networks trained on the clean signal performed perfectly when tested

against the clean version of the third averaged signal. To test the

classification performance of the cleanly trained networks more thoroughly, the

networks were tested against the third averaged signal at several levels of

noise. The creation of the noisy signals and methods of testing against noise

are described below.

5.3.4 The Effects of Noise

Since it had proven relatively easy to train a network to be a perfect

classifier of the clean signals, the more difficult case of classifying under

noisy conditions was evaluated. The signals used for training and testing

contained a very small level of noise, as evidenced by the result of averaging

eight signals in each class. This level of noise was clearly not difficult for

the networks to handle. To test the networks under more difficult conditions,
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I
and to help determine the level of noise to use in the human testing, the

networks were tested against noisy input. The noisy signals were generated by

adding random noise sequences to the averaged signals of each class. In

particular, random sequences were generated from a normal distribution with a

mean of zero and standard deviation of 0.3. For each class of signal, eight

levels of noise were used. Eight signal-to-noise ratios were computed using

the formula

SNR - 20 * log (highest value in signal / standard deviation of noise)

= 20 * log (signal scaling factor / 0.3)

The resulting signal-to-noise ratios were:

Signal Scaling Factor SNR

1.6 14.6

1.4 13.4

1.2 12.0

1.0 10.5

0.8 8.5

0.6 6.0

0.4 2.5

0.2 -3.5

Each of the 18 averaged signals was multiplied by the eight different

signal-to-noise scaling factors, and each of the eight resulting signals was

added to one of the normal distribution random sequences. This produced

complete sets of training signals with eight different signal-to-noise ratios.

Appendix B shows A590 (Air Filled, 5% shell thickness at 90 degrees) in its

averaged form and at two of the noise levels resulting from this process (8.5

dB and -3.5 dB).

During testing 20 signals at each of the eight noise levels for each class were

used. Each of the 20 instances of the signals used a different random

sequence, generated with the Microsoft C random number generator. However, the

same random number sequence was used for a given instance across classes of
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signals. This prevented differences in the noise from affecting the results

across all classes of signals.

The networks tested against these noisy signals had been trained on the clean

versions of the first two averaged signals of each class. Those training

signals had only a small amount of noise present. A hypothesis about network

training states that when faced with substantial noise on the training signals,

a network will be forced to derive any systematic information only from

elements of the signal which will not be affected by the noise. If so, a

network trained on noisy signals may be better equipped to handle noisy test

signals. To test this hypothesis, networks were trained to classify content,

thickness and angle using noisy signals. Two networks were trained at each of

the eight noise levels using a new random sequence each time a training signal

was needed by the network.

Figure 5-3 shows the classification performance of two networks, one was

trained on averaged signals and the other was the best performing network

trained on noisy signals. The test signals are at all eight noise levels, plus

clean signals on which the network was not trained (these are labeled

"infinite" SNR). In both cases classification performance shows a gradual

decline as the noise level increases. There are no precipitous drops in

performance as noise increases, and performance is still above chance (1/18) at

the lowest SNR tested.

The network trained with signals at 8.5 dB SNR stayed above 90% correct

classification until the SNR of the test signals was reduced to 6.0 dB or

less. At higher noise levels performance degrades gradually. The training

noise level must be raised to surprisingly high levels before the network

cannot be trained to a good performance level. Adding noise to the training

signals increased classification performance on noisy signals by very large

amounts, and a fairly high level of noise on the training signals seems to

produce the best results. This result has significant and positive

implications for the ability of this technology to transfer to real-world

situations with high noise levels.
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5.4 Experiment 3: Operators Using Base Tools and Neural Networks

Experiment 3 was carried out in the same manner as Experiment 1 with the

important addition of the neural network classifier as a tool to be used in

making personal judgements as to the three classification parameters. By

pressing the F5 key, the user invoked the network display in the lower left

corner of the screen shown in Figure 3.2. This display showed how the network

had classified the three parameters and its confidence in each parameter's

rating. The confidence bar graph was only labeled from high to low in order to

-- 'uce tne user's dependence on the network results. It was also scaled in

such a way as to rarely reach the high end of the scale.
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6.0 RESULTS

6.1 Introduction

Upon completion of the experiments, ten subjects had run ten sessions each of

Experiment I and five sessions each of Experiment 3. Experiment I evaluated

the performance of humans without the aid of the network, and Experiment 3

examined human performance when the network was available. The performance of

the neural network by itself was shown in two ways. First, Experiment 2

evaluated the network's performance against signals at a range of SNRs. These

results are described in Section 5.3.4, and shown in Figure 5-3. Second, for

the purpose of comparison with Experiments I and 3 the network's responses to

the signals used in Experiment 3 were recorded and are used in the following

analyses. All ten subjects' performances over all fifteen experimental

sessions are shown in Appendix C.

The performance dcta were collected during the course of the experiment as the

subjects made their choices for each signal. Their classifications were

recorded by parameter (thickness, content, and angle) and for the signal as a

whole. Classification of the entire signal is referred to as "overall"

classification. As these data were collected the frequency by which the

subjects used each of the tools was also recorded.

Performance varied greatly among the ten subjects. In particular two of the

subjects showed much stronger performance against the noisy signals than the

rest of the group. These two subjects are singled out at one point in the

analysis to compare network performance with the best human performance. A

repeated measures analysis of variance (ANOVA) procedure was applied in several

ways to these performance data to discover the statistically significant

effects of the experiment. The performance data were summed over each session

to give the number of correct classifications, by parameter and overall, for

the session. Subsets of this data set were created to analyze different

aspects of the experiments. These analyses are presented below.
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The use of the tools by the subjects in different situations is also of great

interest. A correlation analysis is done for each of the 'Luim7 .*,eriments to

determine statistically significant relationships between the use of tools and

the performance of the subjects.

6.2 Training- EffectsV
The first analysis is concerned with training effects, increases in performance

as the sessions progressed, under clean and noisy conditions. The performance

results of each subject, by session (1-10 of Experiment 1) and by noise level

(Noisy or Clean) were submitted to ANOVA. The performance of the subjects over

the ten sessions is shown in Figure 6-1. Both clean and noisy signals are

4classified with increasing accuracy over the course of the experiment, with

noisy signals more difficult to classify. The effect of noise on performance

is significant, F(1,9)=6.84, p<.05. The training effect of the sessions is

also significant, F(9,81)=5.73, p<.O01. This demonstrates that subjects

improved in the task over the time allotted for the experiments, and that noisy

signals provide a significantly greater challenge than clean signals. The

average number correct advanced from 2.3 to 9.1 for clean signals and from 1.1

to 5.4 for noisy signals. There is no significant interaction between noise

level and session. The large variability from subject to subject in

performance on clean signals is somewhat surprising. It also appears that

classification performance is still increasing at the end of the experiment. A

longer test in which the subjects are allowed to reach asymptotic performance

would better test human-network interaction. This should be carried out in

future studies.

6.3 Training Effects by Parameter

The second analysis looked at the same training effects across noise

conditions, this time by parameter instead of overall. That is, for each

subject, session, and noise level the performance on each of the three

parameters is reported separately. Since thickness is chosen from only two

possibilities instead of three for content and angle, these values are scaled

(town to 2/3 of their original values to make the chance values of these

parameters equivalont. This is only done in the case of human subjects, for
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whom performance values are not close to the maximum possible values. Figure

6-2 shows performance averaged over the three parameters for each session, by

noise level. As in the first analysis, there is a significant training effect,

F(9,81)=6.07, p<.O01, and a significant noise effect, F(1,9)=9.20, p>.025, but

no significant interaction between noise and session. The average number

correct advanced from 7.14 to 11.66 for clean signals and from 6.31 to 9.50 for

noisy signals.

t Figure 6-3 shows performance as a function of parameter, averaged over all

subjects and sessions, for clean signals, noisy signals, and an average of

both. The significant effect of parameter is clear here, F(2,18)-46.93,

p<.001. The performance difference between angle judgements and thickness

judgements is apparent, with thickness performance barely above chance levels.

Angle proved the easiest parameter for the subjects to judge. For clean

signals, an average of 7.11 correct thickness judgements were made per session,

while 12.94 correct angle judgements were made. This is almost certainly due

to the distinct shape of the 90 degree (broadside) waveforms, which have a

strong initial specular return followed by little remaining energy. This is in

sharp contrast to the 45 and 0 degree signals. Content performance falls

somewhere between thickness and angle performance.

Further inspection of Figure 6-3 reveals a relatively large effect of noise on

content and angle judgments, but relatively little effect on noise on thickness

judgments. This is revealed in a statistically reliable noise by parameter

interaction, F(2,18) - 5.48, p < .025, which most likely reflects a floor

effect in the thickness judgement.I
A significant interaction between parameter and session, F(18,162)=2.82,

p<.001, is also due to the difficulty most subjects experienced in classifying

thickness. As shown in Figure 6-4, there is very little improvement in the

number of correct thickness judgements averaged over subjects. Angle judgement

shows quick improvement early, and content judgement shows similar but smaller

improvements. These differences produce the interaction effect. There is no

significant three-way interaction between parameter, noise, and session.

47 ARD



CLIa

co to

L4

IL-

C~j w

U3

co~~£ (nC o 0 ai C

'na

C-3 >

aCa

_ _ I _ _ _ (3t
____ _ __ ________ __ ___ ____ _ U

48 CAR



II

00

0 ~as
Cm -'ca

0 C Cl

'-4

0

C-aC

CCi

C3a
C-3,

C--
CUd

0-H

C:i

c a

49 ARD~



U3

4J U
acm
.9C ci

CC3

5O

C* - C17

U)

rn

COn

-'1-: - C

0

(12

Co o

U)

MO (D2

CCO3

.C3C

CCO

3r4

50 ARD



I

6.4 Effect of Neural Network as a Tool

In the third ANOVA analysis, the effect of having a neural network classifier

available is considered. The overall performance data were arranged by

subject, session, the presence of a neural network (Yes or No), and noise

level. Since the subjects used the network for five sessions in Experiment 3

only the last five sessions of the subject-only data are considered in this

analysis. By these sessions the subjects are assumed to have learned most of

what they will learn over the ten sessions. Figure 6-5 presents this data.

Session effects have been studied in earlier analyses, and the significant

noise effect, F(1,9)-18.90, p<.005, is expected from previous results. The

very large effect of the network is of primary importance, F(1,9)=65.47,

p<.001. Previous results showed the excellent classification performance of

the network alone, most importantly in noisy signals, and it is not surprising

that the subjects as a group performed much better with the network available

than without. On clean signals, the subjects averaged 7.1 correct

classifications without the network and 17.0 with. On noisy signals the

average number of correct classifications rose from 4.02 to 15.22. The

subjects quickly learned that the network was better at classifying the signals

than they were.

6.5 Performance of Network Alone

To further characterize the performance of the networks, the fourth analysis

arranged the network's overall performance by noise level. These were the data

for the network acting by itself to classify the same signal set that the

subjects classified in Experiment 3. These data are shown in Figure 6-6.

Classification of clean signals is perfect, 18 correct in each session, while

the average number of noisy signals correctly classified is 16.4 over the five

sessions. Two sessions were perfect, one recorded 16 correctly classified

noisy signals, and two had 15 correctly classified noisy signals. The

difference in classification performance between noisy and clean signals is not

significant, F(1,4)-5.57, although the number of incorrect responses came very

close to the intended level of ten percent. At the higher noise levels needed

to reduce network performance further, human performance is expected to drop
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precipitously. The effect of parameter is significant, F(2,8) = 4.65, p<.05.

This is due to the drop in performance on content, the only parameter the

network had significant trouble with when the signals were noisy. The average

number of noisy signals correctly classified on content was 16.6. The

thickness of noisy signals was correctly classified an average of 17.8 times

per session, and angle was classified perfectly.

6.6 Comparison of Subjects and the Network

Having established the individual performance of humans and networks on the

given signal set, and of humans acting with networks, it remains to compare the

performances of all three conditions. For this purpose, the final ANOVA

concerned the overall performance of humans without networks (using the last

five sessions of Experiment 1), humans with networks (using the five sessions

of Experiment 3), and networks alone (using the network's response to the

signals of Experiment 3). For the two cases in which subjects were involved,

the average performance over the subjects was used since there exists only one

network "subject" against which they were compared. These data were arranged

by session, by "classifier" (Human, Human with Network, and Network), and by

noise level.

Two of the subjects markedly outperformed the group. Poorly performing

subjects might be expected to follow the judgement of the network, which the

subjects could see performing well during Experiment 3, without much additional

effort to improve on the network's performance. The two excellent subjects are

expected to have the best chance of improving on the network's performance.

For this reason two analyses were done, the first using an average of only the

two top performers and the second using an average of all ten subjects.

6.7 Network Use by the Rest Two Subjects

Figure 6-7 shows the results of the top two performers versus the network. A

significant noise effect is apparent, F(1,4)-63.36, p<.O05, as is a significant

effect of "classifier" (human, human and network, network), F(2,8)-38.64,

p<.001. There is also a significant interaction between the two, F(2,8)=21.71,

p<.O01. The effect of noise is easy to attribute primarily to the subjects
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acting alone in Experiment i. There the two subjects showed much greater

performance on clean than noisy signals (15.6 correct averaged over session,

versus 9.8, respectively). Much smaller differences are apparent for the other

two conditions. These two subjects showed a smaller performance difference

between noisy and clean signals than most of the subjects.

The significant effect of "classifier" is clearly due to the relatively poor

performance of the subjects acting alone compared to the two conditions in

which networks were involved. The subjects acting alone averaged 12.7 correct

responses per session, while the network alone averaged 17.2 correct responses

per session. While this is not surprising, the performance of subjects acting

with the aid of networks did not exceed that of networks acting alone. The

ultimate goal of such a system is to take advantage of the best aspects of

humans and networks to form a system superior to either alone. A posthoc

analysis by a series of t-tests reveals that most differences between the

performances of the "classifiers" in noisy and clean conditions are

significant. Only for clean signals is there no significant difference between

the two subjects acting alone and with the aid of the network. Nor is there a

significant difference between the two subjects using the network and the

network acting alone. There is, however, a significant difference between the

subjects alone and the networks alone.

Since the network is known to be perfect on clean signals, the only explanation

for less than perfect performance of the subjects in Experiment 3 for clean

signals is that they sometimes disagreed with the network, incorrectly. When

noise is introduced, however, the two top subjects are unable to perform better

with the network available as a tool than the network could on its own.

The interaction of noise and "classifier" is again due to the relatively poor

performance of the subjects acting alone on noisy signals. While the three

"classifiers" showed similar performance on clean signals, the two top subjects

acting alone dropped in performance much faster than the two conditions in

which networks were involved, when noisy signals are considered.
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6.8 Network use by the Entire Group of Subjects

Figure 6-8 shows the second analysis, in which the human data is an average of

all ten subjects rather than the high performing subset of the subjects. The

only apparently substantial change is in the performance of humans acting alone

in Experiment 1. Their scores drop to 7.10 on clean signals and 4.02 on noisy

signals. There is a significant effect of noise, F(1,4)=28.75, p<.Ol, as

before. Since the difference between the low performance of humans alone and

the high performance when networks are involved seems to be the reason for

significant effects of the experimental condition, it is not surprising to find

a significant effect of "classifier" (humans, humans with network, network)

here, F(2,8)-307.06, p<.001, and a significant interaction between noise and

"classifier", F(2,8)-7.76, p<.025. These are the same effects seen when only

the two top subjects are used, with the lower human performance making these

effects more pronounced.

The same series of posthoc t-tests as was performed on the two subjects was

applied to the ten subjects. In this case the difference between the subjects'

pertoLmance on clean signals with and without the network is significant, as is

the difference between the subjects' performance on clean signals with the

network and the network's performance alone.

6.9 Tool Use

To analyze the patterns of tool use by the subjects the frequency of use of the

tools was correlated with classification performance. The last five sessions

of Experiment I and each of the five sessions of Experiment 3 were used. For

each subject, the use of each of the tools was totaled over each session. To

this list was attached the number of correct classifications by parameter, and

overall. Separate data were compiled for Experiments I and 3. Correlations

were taken for each experiment separately. In addition, the same analysis was

done for the two top performing subjects alone to see if they used the tools in

any different manner than the subjects as a whole. Significant correlations

are assumed at the .05 level.
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6.9.1 Tool Use: Humans Alone

The only significant correlation (at the .05 level) for the ten subjects

classifying the clean signals is between playing the signal and angle

classification performance, and this is a negative correlation. It is

hypothesized that the ten subjects applied fairly different strategies to the

initial task, resulting in few correlations across session.

When faced with noisy signals, subjects seem to rely on the various graphical

tools more. The use of frequency display, and of the combination of frequency

and spectrogram, are correlated with overall classification performance. When

these tools were used, performance was higher. Subjects tended to do better on

thickness and content when these displays were used more frequently. In

contrast, use of the spectrogram tool is marginally significantly correlated

(.10) to performance on angle. The frequency of playing the noisy signals is

negatively correlated with overall classification performance.

It is expected that playing the signal is the most familiar tool available to

these novice subjects. They may rely on it earlier in the test and come to

understand the other tools over time, while their scores are improving from

remaining practice effects. This would account for the frequency of playing

the signals decreasing while performance increases.

6.9.2 Tool Use: With Network Aid

Again there are few correlations other than the significant negative

relationship between overall performance and frequency of playing the signal.

Since one ray expect practice effects to be leveling off by these last five

sessions, this relationship might be due to uncertainty over the more difficult

signals. Faced with the harder signals the subjects may be trying to gather

more information by playing the signal more frequently. Given that the network

is prone to failure on only some of the noisy signals, the subjects may be

playing these signals more to make up for shortfalls of the network.
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6.9.3 Tool Use by Top Two Subjects

Some marked changes occurred when only the top two performing subjects were

included in the correlation. These subjects showed a higher number of

significant correlations under all conditions than the entire group of subjects

did. This suggests that the more these two subjects used the group of tools,

the better they were able to classify. In Experiment 1 the two subjects showed

the same significant negative correlation between the frequency of playing the

signal and overall performance that the ten subjects showed. However, in

Experiment 3 this reversed to a significant positive correlation. This appears

to be due to the strategy of one subject to refrain from playing the signal

late in Experiment 3, presumably when the subject felt knowledgable about the

other tools based on previous excellent performance. The subject then fell

slightly in performance without the information provided by playing the clean

signals.
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7.0 DiSCUSSION

Several major conclusions can be drawn from the results reported in the

previous section. First, as expected, both session and signal noise had a

major effect on the classification performance of human listeners. Second,

differences occurred in classification performance across the three individual

signal parameters and these differences appeared to change with subject

experience. Third, the use of classification tools developed in relatively

complex ways with experience and the pattern of use differed substantially

across the individual subjects. Fourth, the artificial neural networks (ANNs)

performed nearcly perfectly as planned. These high levels of network

performance led the human users to rely nearly exclusively on the networks as a

decision aid to the neglect of the other tools. Here again, large differences

occurred in this pattern across the individual participants. Each of these

major conclusions is considered in more detail below and recommendations are

drawn for further human research using the test-bed system developed on this

project.

7.1 The Role of Practice and Signal Noise on Overall Performance

The classification task used here proved to be a difficult one for human

subjects. This is clear from both the overall correct performance in which

all three of the characteristics of the insonified objects are identified

correctly as well as from performance on the individual parameters considered

alone. On both measures, performance was shown to increase with practice and

to degrade when simulated environmental noise (0 mean Gaussian noise) was added

to the signals. Both results were anticipated, but a closer examination of

individual differences revealed some interesting findings. For these and other

finer-grained analyses we focus on the last five blocks of the first experiment

after subjects were familiar with the task. Substantial individual differences

occurred with overall correct performance with clean sounds ranging from 94% to

9' (mean of 39%) and from 56% to 9% with the noisy sounds (mean of 22%). The

overall group was split into "good" and "bad" performers at the median level

for clean signals. These two groups were differed in several ways, two of

which are spelled out here. First, the good classifiers showed steady
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improvement over the five sessions on both the clean (slope = 7.3%) and noisy

signals (slope = 3.6%), whereas the bad classifiers improved little (slope -

0.3 and 1.6, respectively). Second, although performance for both groups

suffered with the addition of noise (62% versus 32% and 17% versus 13%, for the

good and bad groups, respectively), the impact of noise was far greater on the

good performers than on the poor performers. Although even the bad subjects

were performing above chance, this group difference likely reflects "floor

effect" in the weak performers' data. It is also possible that the good

classifiers simply chose to focus on the clean rather than noisy sounds, with

the bad classifiers focusing on both. The exact reason for these individual

differences cannot be determined on the basis of the present data. However, it

seems clear that future experiments should incorporate a longer training period

and perhaps a more careful screening and selection of subjects.

7.2 The Role of Object Parameters

The three physical parameters of the objects insonified to derive the test

signals used here manifest themselves in different ways acoustically. For

example, in our previous research we have shown object angle to be primarily a

time-domain feature, whereas object thickness is primarily a frequency-domain

feature and contents incorporate both time- and frequency-domain characteris-

tics. As mentioned in the previous analysis, large differences in performance

occurred across these parameters. As in the overall analysis, the good

classifiers did much better than the bad on the individual parameters (average

correct = 80% and 52% for the two groups, respectively). Most interesting,

however, is the relative difficulty experienced by the two groups. In

particular, the good group identified all three parameters at well above chance

levels (81%, 74% and 85% for thickness, contents and angle, respectively)

whereas the bad group performed at chance on thickness (50% chance) and only

slightly above chance on contents (33% chance) (45%, 42% and 70% for thickness,

contents and angle, respectively). (Note that the data were adjusted to

compensate for the differences in chance level in the ANOVA analyses reported

in the previous section). This result suggests that the poor classifiers may

have had particular difficulty in extracting frequency-domain information

which, by our previous findings, should be especially important for thickness

and somewhat important for contents judgments.
ARD
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7.3 The Role of Signal Processing Tools

A major purpose of this study was to investigate the ability of novice users to

use a range of classification tools which included, time-, frequency- and

spectrographic-plots, an acoustic display and a zooming capability. (The ANNs

as a decision tool will be considered separately below.) The study was

successful in demonstrating the individuals can and do learn to use these tools

over a relatively short training period. Several specific findings are

noteworthy. First, the zooming capability was virtually never used by any of

the subjects and will not be considered further. We still see this as a

potentially useful tool to the analyst which should be retained in future

studies involving more highly trained users.

Second, the acoustic display was widely used by almost all subjects. On the

average, subjects listened to each sound a surprising 13.2 times on each trial

over the final six sessions in the first experiment. Furthermore, individuals

in the good group listened more frequently than those in the bad group for both

clean (13.8 versus 9.8 per sound) and noisy (16.1 versus 14.7 per sound)

sounds. Note also that subjects listened to the noisy sounds (14.7) more often

than to the clean sounds (11.8). Interestingly, use of the acoustic display

alone did not distinguish good from bad performers (for example, one of the

single best subject rarely listened to the clean sounds). Rather, a more

subtle pattern of tool use distinguishes good from poor listeners. This pattern

will be considered below. Third, there were even greater group differences in

the use of the visual aids. Specifically, the good performers used both the

frequency and spectrographic displays on substantially more of the trials than

did th? poor performers (86% versus 44% and 86% versus 71% for the two

displays, respectively). Moreover, the better subjects tended to use these

displays together (76% of the trials) whereas the weaker subjects did not (43%

of the trials). This pattern of tool use is consistent with the performance

data described previously. In particular, our understanding of the acoustic

cues important for distinguishing among the object parameters indicates that

time-, frequency-, and time hy frequency or spectrographic information will all

be required. The time-domain plot of each signal is provided automatically on

each trial, but the other displays must be requested explicitly. The good

;ubjects appear to have learned this, whereas the weak subjects did not. Most
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notable is the comparatively limited use that poor subjects made of the

frequency-domain display. Interestingly, this coincides with the great

difficulty shown by these individuals with the frequency-based, thickness

parameter. Similarly, the only moderate use of the spectrographic display

coincides with the problems they experienced with the time/frequency, content

parameter. Unfortunately, since the time-domain display was always provided,

we cannot comment on its role in signal analysis. In future experiments more

could be learned by providing no default information. In other words, users

should be required to request all displays so that comprehensive tool use data

could be obtained. In addition, it would also be instructive in future

research to examine classification of single- as well as multiple-parameter

sound catalogs. In the present study sounds which differed in all three

parameters were included, and as pointed out above, optimal performance would

likely involve all of the decision aids provided by the test-bed system. This

strategy was adopted in order to obtain as much information as possible in the

limited time available. By examining classification of selected subsets of the

full catalog, selective tool use could also be investigated. For example, if

only signatures from objects of a single shell thickness were presented,

time-domain displays may become less important.

Fourth, although widely applied even on the final session, use of the acoustic

display declined with practice for the good subjects while the graphical tools

(frequency and spectrographic displays) increased in use with practice for

these individuals. No discernible trends in tool use occurred in the poor

subjects' data. We interpret these trends to reflect the more sophisticated

analysis carried out by the stronger subjects. The acoustic display is

obviously a more "natural" presentation of sound than are the graphical

displays. Nonetheless, listening is not necessarily the most useful technique

for an analyst. Hence, the better subjects listened less and used spectral

analysis more as they improved, whereas the weak subjects continued to rely

predominantly on listening. This pattern accounts for the negative correla-

tions reported in the results section between listening and other tool use as

well as between listening and performance. It is important to note, however,

that this result is correlational--it does not suggest that increased listening

leads to poor performance in the task.
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Fifth, both the good and poor subjects used at least one of the visual aids

more often on the noisy signals (96% and 81% of the trials, respectively) than

on the clean signals (76% and 61% of the trials, respectively).

7.4 Artificial Neural Network Performance and Use

As expected from our previous research, the ANNs performed perfectly when clean

signals were used. As indicated previously, we added noise to the signals in

an effort to degrade the ANN's performance to a more realistic level. We faced

a delicate trade-off here since human performance declined dramatically with

noise levels of only moderate difficulty for the networks. For this reason, we

selected a signal-to-noise ratio for our noisy sounds which had only a minimal

impact on the network performance (approximately 10% decline). Even this

conservative choice led to a major deterioration in listener performance.

The consequence of this disparity between the network and listener performance

was a nearly complete reliance on the ANN tool for decision making. This tool

was used by virtually every listener on nearly every trial for both the good

and poor performers (90% and 96% of the trials, respectively). As described in

the results section, this tool had a major impact on classification

performance. Overall performance improved dramatically to 95% and 85% for the

clean and noisy signals, respectively. This improvement occurred for both the

stronger and weaker subjects (91% and 89%, respectively). Interestingly, most

subjects continued to experiment with at least some of the other decision aids.

Specifically, although there was a general decline in the frequency of

listening after the ANNs were made available in the third experiment, this

display was still widely used by both good (4.2 plays per sound) and poor (9.1

plays per sound) subjects. Similarly, the visual aids were used less often

with the networks, but were still used by many subjects, especially for the

noisy signals. These findings on the use of .,-i ANN decision aid lead to at

least two recommendations for further research. First, it would be of interest

to examine the frequency of network use as its reliability is degraded.

Clearly, this cannot be accomplished by adding noise to the signals, i.e., at

the network input, since human performance would decline to chance levels.

Rather, performance could be degraded by adding noise to the network outputs,

hence, achieving the objective of introducing errors into the network output
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without damaging the signal quality. Second, it would also be interesting to

examine the role that ANNs may play as a training tool. The observation that

users continued to examine the signals both acoustically and visually whilL

basing their judgment on the networks suggests that learning may be continuing.

If subjects were retested without the network tool in subsequent sessions, the

significance of ANNs as a training aid could be determined.

7.5 Summary

The first experiment established that people were capable of learning to

classify this signal set. Performance did increase over the sessions, reaching

a reasonably high level on average. A large amount of variability exists among

the subjects, with some still apparently at chance levels while two were

excellent at cl issifying clean signals and good at noisy signals. The use of

the various tools available varied widely from subject to subject, indicating

that such an analysis system is difficult to adapt to many operators if it

depends on only one method of deriving information from the signals. People

show strong d&fferences in how they best interpret information, and a

classification system which provides various means of interpreting a signal

will find greater acceptance and higher performance from a population of users.

Experiment 2 5howed that the neural network proved to be a much better

classifier than the average of the subjects, and somewhat better than the best

of the subject-, on clean signals. Experiments I and 3 were limited in

duration, and -.e may expect further learning to take place in longer tests.

This is certair'y the case in real-world systems, in which parity might be

expected betwee operator and network, and in many cases superiority of the

operator. When -resented with noisy signals, the network strongly outperformed

the subjects. "The learning curve on noisy signals may be ,ery long for the

subjects, but the capability of the network on noisy signals is outstanding.

While the best two subjects classified noisy signals correctly more than twice

as frequently as the average of all ten subjects, the network was far better.

When given the network as an additional tool in Experiment 3, the subjects soon

came to depend on it. It so outperformed most of the subjects that they

abdicated most decisions to it. When the subjects disagreed with the network,
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the subjects were usually wrong, resulting in slightly lower scores than the

network itself. In the time allotted, the subjects were unable to identify the

faults and strengths of the network so that they could know when to trust it

and when to override it. This situation is likely to change when the system is

faced with real-world signals of higher complexity

In conclusion, this study accomplished the primary objectives set forward in

the introduction. We have demonstrated clearly that naive human users can

learn to perform a demanding acoustic analysis task and to use a variety of

decision aids in the process. Furthermore, the results described in this

report make it clear that tool use depends on the interaction of a number of

different factors. Some have been tentatively identified in this report and

others must await further research. We conclude that the test-bed system

developed here will be an extremely effective tool for understanding the

complex dynamics of acoustic analysis.
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APPENDIX A

AVERAGED SIGNALS

These are the eighteen averaged signals used in much of the analysis as the

clean version of the signals. Appendix B illustrates the effect of adding

noise to these signals. Here the signals have been averaged across eight

samples of the signal per class. The mean is shifted to zero, amplitude is

normalized to the range (1,-l) and standardized to 500 points. See Sections

2.3 and 2.4 for further details.
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APENDIX B

SIGNAL NOISE LEVELS

The airfilled, 5% shell thickness, 90 degree class of signal is shown at threenoise levels. The noise levels are clean (the averaged signal), 8.5 dB, and
-3.5 dB.
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APPENDIX C

SUBJECT CLASSIFICATION PERFORKANCE

These are plots of the ten subjects' performances. There are two charts for

each subject, one for results on clean signals and one for noisy. Each chart

has results for the three parameters separately as well as the overall

performance. The first ten points on each chart are the results of Experiment

1 and the last five points are results of Experiment 3.
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